Statistics

Department Information

• **Department Chair:**
  Rhonda Magel, Ph.D.

• **Department Location:**
  221 Morrill Hall

• **Department Phone:**
  (701) 231-7177

• **Department Email:**
  ndsu.stats@ndsu.edu

• **Department Web Site:**
  https://www.ndsu.edu/statistics/

• **Application Deadline:**
  Application deadline is March 15 for international students and applicants who would like an opportunity for an assistantship if available.

• **Credential Offered:**
  Ph.D., M.S., Certificate

• **Test Requirement:**
  GRE (recommended)

• **English Proficiency Requirements:**
  TOEFL iBT 79; IELTS 6.5

Program Description

The Department of Statistics offers programs leading to a Ph.D. in statistics or a master's degree in applied statistics. The program is flexible enough to be individually planned around prior experience and in accord with professional goals.

During the first year of the program, students are strongly encouraged to meet with each faculty member to discuss possible research topics. The student should select an advisory and examining committee by the end of the first year.

A joint master's degree in computer science and statistics may also be obtained. A graduate certificate in Statistics for non majors is also offered.

Graduate Certificate

• B.S. or equivalent degree from an accredited university,

• Knowledge of College Algebra

Master's Program in Applied Statistics

In addition to the Graduate School requirements (http://bulletin.ndsu.edu/graduate/admission-information), the applicant must:

• Have had at least one year of calculus,

• Have had at least one course in statistics, and

• Have had at least one programming language

Joint Master's Program in Computer Science and Statistics

To be admitted with full status into the M.S. program in computer science and statistics, the applicant must satisfy the admission requirements for both the M.S. program in computer science and the M.S. program in applied statistics.

Ph.D. Program in Statistics

In addition to the Graduate School requirements, the applicant must:

• Have an M.S. degree in statistics or related area
Students not holding a master’s degree in statistics or a closely related field will not be admitted to the Ph.D. program in statistics. These students must first apply to the M.S. program in applied statistics and complete the M.S. degree.

**Ph.D. Program in Statistics (with Emphasis in Sports Statistics)**

In addition to the Graduate School requirements, the applicant must:

- Have an M.S. degree in statistics or related area and some knowledge or interest in sports

**Financial Assistance**

Teaching assistantships are available. To be considered for an assistantship, the application must be complete with the Graduate School no later than March 15.

**Graduate Certificate**

The graduate certificate requires 12 semester credit hours consisting of graduate level courses in statistics. STAT 725 needs to be the first course taken for students with little or no prior knowledge of statistics. No credit will be given for STAT 725 for the certificate if it is not the first course taken. Students in the certificate program should not take both STAT 661 and STAT 726. STAT 726 is recommended. Also, students in this program should not take both STAT 670 and STAT 671. After completing the requirements for the certificate, please contact the Department of Statistics to verify completion.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 670</td>
<td>Statistical SAS Programming</td>
<td>3</td>
</tr>
<tr>
<td>STAT 671</td>
<td>Introduction to the R Language</td>
<td>3</td>
</tr>
<tr>
<td>STAT 725</td>
<td>Applied Statistics (must be taken first or no credit will be given)</td>
<td>3</td>
</tr>
<tr>
<td>STAT 726</td>
<td>Applied Regression and Analysis of Variance</td>
<td>3</td>
</tr>
<tr>
<td>or STAT 661</td>
<td>Applied Regression Models</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

**Master of Science in Applied Statistics**

The program for the M.S. degree in applied statistics requires 32 semester credits with an overall GPA of 3.0 or higher. An oral defense of a research-based thesis or paper is required.

Complete a set of core courses* with a grade of B or better, including

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 661</td>
<td>Applied Regression Models</td>
<td>3</td>
</tr>
<tr>
<td>STAT 662</td>
<td>Introduction to Experimental Design</td>
<td>3</td>
</tr>
<tr>
<td>STAT 764</td>
<td>Multivariate Methods</td>
<td>3</td>
</tr>
<tr>
<td>or STAT 774</td>
<td>Generalized Linear Models</td>
<td></td>
</tr>
<tr>
<td>STAT 767</td>
<td>Probability and Mathematical Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 768</td>
<td>Probability and Mathematical Statistics II</td>
<td>3</td>
</tr>
</tbody>
</table>

Successfully complete two 1-credit practicums in consulting. Each statistical practicum will be listed as STAT 794

Complete an additional 9-12 hours (depends on number of research hours) of course work selected from the following courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 660</td>
<td>Applied Survey Sampling</td>
<td></td>
</tr>
<tr>
<td>STAT 663</td>
<td>Nonparametric Statistics</td>
<td></td>
</tr>
<tr>
<td>STAT 664</td>
<td>Discrete Data Analysis</td>
<td></td>
</tr>
<tr>
<td>STAT 669</td>
<td>Introduction to Biostatistics</td>
<td></td>
</tr>
<tr>
<td>STAT 670</td>
<td>Statistical SAS Programming</td>
<td></td>
</tr>
<tr>
<td>STAT 671</td>
<td>Introduction to the R Language</td>
<td></td>
</tr>
<tr>
<td>STAT 672</td>
<td>Time Series</td>
<td></td>
</tr>
<tr>
<td>STAT 673</td>
<td>Actuarial Statistical Risk Analysis</td>
<td></td>
</tr>
<tr>
<td>STAT 677</td>
<td>Introductory Survival and Risk Analysis I</td>
<td></td>
</tr>
<tr>
<td>STAT 678</td>
<td>Introductory Survival and Risk Analysis II</td>
<td></td>
</tr>
<tr>
<td>STAT 730</td>
<td>Biostatistics</td>
<td></td>
</tr>
<tr>
<td>STAT 732</td>
<td>Introduction to Bioinformatics</td>
<td></td>
</tr>
</tbody>
</table>

*Complete a set of core courses including:

- STAT 661
- STAT 662
- STAT 764
- or STAT 774
M.S. Degree in Computer Science and Statistics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 661</td>
<td>Applied Regression Models</td>
<td>3</td>
</tr>
<tr>
<td>STAT 671</td>
<td>Introduction to the R Language</td>
<td>3</td>
</tr>
<tr>
<td>STAT 669</td>
<td>Introduction to Biostatistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 772</td>
<td>Computational Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 732</td>
<td>Introduction to Bioinformatics</td>
<td>3</td>
</tr>
</tbody>
</table>

One additional graduate course in statistics, not including STAT 725 Applied Statistics or STAT 726 Applied Regression and Analysis of Variance

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI 713</td>
<td>Software Development Processes</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 724</td>
<td>Survey of Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 732</td>
<td>Introduction To Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 765</td>
<td>Introduction To Database Systems</td>
<td>3</td>
</tr>
</tbody>
</table>

Two additional graduate level courses in computer science.

Master's Thesis or Master's Paper Research Credits

Total Credits 42

Ph.D. Degree in Statistics

The program for the Ph.D. degree requires an additional 30 credits of course work beyond the M.S. degree and 30 hours of research. An oral defense of a dissertation is required. All students entering program must have an M.S. degree in statistics or closely related field. Any core course (or similar course) required for the M.S. degree that has not been taken before entering the Ph.D. program, must be taken before obtaining the Ph.D. degree. This may require additional course work beyond the 30 credits depending on the area in which the M.S. degree was obtained.

Successfully complete two 1-credit practicums in Consulting/Presentation Practicum. Each statistical practicum will be listed as STAT 794 Practicum/Internship

Complete at least 30 semester credits of statistics courses at the 600- to 800-level (does not include STAT 725 Applied Statistics STAT 726 Applied Regression and Analysis of Variance). At least 15 credits must be at the 700- to 800-level. Students must take STAT 786 Advanced Inference, STAT 764 Multivariate Methods and STAT 774 Generalized Linear Models if not taken at the M.S. level.
Upon approval by the adviser and advisory committee, up to 9 hours may be taken in Mathematics or Computer Science. It is recommended that a student have knowledge of real analysis at some level such as STAT 767 and STAT 768. Exam 1 covers STAT 661, STAT 662 and STAT 764 or STAT 774. Exam 1 is two hours and Exam 2 is three hours. These exams are offered during approximately the fifth week of each semester. A maximum of two attempts is allowed.

- A plan of study must be submitted at least one semester prior to graduation.
- Pass a written comprehensive exam. This exam consists of two sections. Exam 1 covers STAT 767 and STAT 768. Exam 2 covers STAT 661, STAT 662 and STAT 764 or STAT 774. Exam 1 is two hours and Exam 2 is three hours. These exams are offered during approximately the fifth week of each semester. A maximum of two attempts is allowed.
- Submit a research proposal and pass an oral exam on the proposal and related topics.
- Complete and successfully defend the research dissertation.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 661</td>
<td>Applied Regression Models</td>
<td>3</td>
</tr>
<tr>
<td>STAT 662</td>
<td>Introduction to Experimental Design</td>
<td>3</td>
</tr>
<tr>
<td>STAT 764</td>
<td>Multivariate Methods</td>
<td>3</td>
</tr>
<tr>
<td>or STAT 774</td>
<td>Generalized Linear Models</td>
<td>3</td>
</tr>
<tr>
<td>STAT 767</td>
<td>Probability and Mathematical Statistics I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 768</td>
<td>Probability and Mathematical Statistics II</td>
<td>3</td>
</tr>
<tr>
<td>Additional statistics courses, not including STAT 725 or STAT 726</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>If not taken at the M.S. level, student must take STAT 764, STAT 774, STAT 786.</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>STAT 899</td>
<td>Doctoral Dissertation</td>
<td>60</td>
</tr>
</tbody>
</table>

Ron Degges, Ph.D.
North Dakota State University, 2011
Field: Sampling, Regression Analysis

Seung Won Hyun, Ph.D.
University of Missouri, 2010
Field: Optimal Designs, Adaptive Designs, Clinical Trials

Rhonda Magel, Ph.D.
University of Missouri-Rolla, 1982
Field: Nonparametrics, Inference Under Order Restrictions, Regression

Megan Orr, Ph.D.
Iowa State University, 2012
Field: Biostatistics, Gene Expression Analysis, High-Dimensional Data, Analysis and Multiple Testing

Gang Shen, Ph.D.
Purdue University, 2009
Field: Mathematical Statistics, Asymptotic Theory, Bayesian Analysis, Change-Point Problem

Yarong Yang, Ph.D.
Northern Illinois University, 2010
Field: Machine Learning, Spatial Statistics, Bayesian Statistics, Bioinformatics